Nonclassical Nucleation

  • [2017-09-09]

    Speaker: Prof. Helmut Cölfen
    Universität Konstanz
    Time: 2017-09-09 15:30
    Place: ROOM 9004, Hefei National Laboratory Building

    Detail:

    Abstract:
      In recent years, research on nucleation and crystallization has revealed alternative pathways to the classical ones known from the textbooks of crystallization. These so called nonclassical pathways allow for a better understanding of so far difficult to understand crystallization processes as observed for example in Biomineralization. In addition, they open up entirely new possibilities for the control of crystallization processes and therefore crystals, which would be impossible to synthesize by classical methods.
      The presentation will focus on nonclassical nucleation processes for the example of CaCO3. It can be shown that so called prenucleation clusters of ca. 40 ion pairs in size exist in equilibrium with the ions and ion pairs. These clusters are highly dynamic polymers which constantly form and dissociate. Their formation is entropically driven by the release of hydration water. Increasing the overall ion concentration leads to a decrease in their dynamics and a phase transition in form of binodal demixing to nanodroplets. These coalesce and form larger droplets which solidify and form amorphous CaCO3, which finally crystallizes. This multi-step nucleation scenario is not only relevant for CaCO3, but also other minerals like calcium oxalates or phosphates and also organic molecules like amino acids. For the example of glutamic acid, it will be shown that classical layer by layer growth can be initiated by nanodroplets which attach to the crystal surface from the solution phase.

    Organizer: Hefei National Laboratory for Physical Sciences at the Microscale
       

  • MORE NEWS

HIGHLIGHT

Highlight of USTC

According to the latest Nature Publishing Index (NPI) Asia-Pacific and The Nature Publishing Index China, University of Science and Technology of China tops in Chinese universities again. The rankings are based on the number of papers that were published in Nature journals during the last 12 months.

Highlight

This article came from News Center of USTC.