• Students
  • Faculty & Staff
  • Visitor
  • 中文
  • search
  • Home
  • About
  • Admission
  • Research
  • News & Events
  • Schools
Home About Admission Research News & Events Schools Students Faculty & Staff Visitor 中文
search
[ScienceNews]Merging magnetic blobs fuel the sun’s huge plasma eruptions
Date:2019-03-07 
  • [2019-03-07]

    BURSTING WITH PLASMA  Solar scientists have long wondered what drives big bursts of plasma called coronal mass ejections. New analysis of an old eruption suggests the driving force might be merging magnetic blobs./photo from Science News

    Solar plasma eruptions are the sum of many parts, a new look at a 2013 coronal mass ejection shows.

    These bright, energetic bursts happen when loops of magnetism in the sun’s wispy atmosphere, or corona, suddenly snap and send plasma and charged particles hurtling through space (SN Online: 8/16/17).

    But it was unclear how coronal mass ejections, or CMEs, get started. One theory suggests that a twisted tube of magnetic field lines called a flux rope hangs out on the solar surface for hours or days before a sudden perturbation sends it expanding off the solar surface.

    Another idea is that the sun’s magnetic field lines are forced so close together that the lines break and recombine with each other. The energy of that magnetic reconnection forms a short-lived flux rope that quickly erupts.

    “We do not know which comes first,” the flux rope or the reconnection, says solar physicist Bernhard Kliem of the University of Potsdam in Germany.

    Kliem and his colleagues scrutinized a CME recorded on May 13, 2013, by NASA’s Solar Dynamics Observatory. They found that before it erupted, a vertical sheet of plasma split into blobs, marking breaking and merging magnetic field lines. Over about half an hour, the blobs shot upward and merged into a large flux rope, which briefly arced over the solar surface before erupting into space. That quick growth supports the idea that CMEs grow through magnetic reconnection, the team, led by Tingyu Gou and Rui Liu of the University of Science and Technology of China in Hefei, reports March 6 in Science Advances.

    “This was actually surprising, that this reconnection was rather fast,” Kliem says.  That speedy setup might make it more difficult to predict when CMEs are about to occur. That’s too bad because, when aimed at Earth, these bursts cause auroras and can knock out power grids and damage satellites.


    ScienceNews  BY LISA GROSSMAN 4:46PM, MARCH 7, 2019

    https://www.sciencenews.org/article/coronal-mass-ejection-magnetic-sun-plasma-eruption


Quick Links
Hotline
Campus View
Dictionary
Video Course
Library
Services
Campus Areas Maps
On Campus Societies
Dining Centers
Sports Center
Hospital
Join Us
Join Us
Teacher Recruitment

Address: University of Science and Technology of China,
No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, P.R.China.

E-mail: OIC@ustc.edu.cn

Copyright © 2013 University of Science and Technology of China.