• Students
  • Faculty & Staff
  • Visitor
  • 中文
  • search
  • Home
  • About
  • Admission
  • Research
  • News & Events
  • Schools
Home About Admission Research News & Events Schools Students Faculty & Staff Visitor 中文
search
A New Method for Small-sized Platinum Intermetallic Fuel Cell Catalysts
Date:2022-11-24 

Platinum plays a main role in the fuel cell catalyst but restricts the commercialization of fuel cells due to its high cost. Given this, scientists developed Intermetallic compounds (IMCs) as a promising yet low-Pt electrocatalyst.

However, the synthesis of IMCs remained tough because direct high-temperature annealing easily leads to alloy sintering, enlarging the nanoparticle and causing a decrease in Pt availability.

Recently, a research group led by Pro. LIANG Haiwei from the University of Science and Technology (USTC) developed a small molecule-assisted impregnation approach to realizing the general synthesis of carbon-supported platinum intermetallic fuel cell catalysts. The study was published in Nature Communications .

Previously, LIANG’s team and collaborators realized sulfur-anchoring synthesis. However, the use of commercialized carbon black propelled the discovery one step closer to widespread application.

In the research, scientists first screened some small molecules containing heteroatoms as additives in the impregnation and suppressed PtCo sintering, taking the additive-free group as a control.

“Notably, sulfhydryl group-containing molecules…exhibited outstanding capacity for suppressing PtCo sintering,” the researchers wrote in the paper, and water-soluble sodium thioglycolate (STG) stands out to be the optimal additive.

After that, the conditions of annealing were optimized to synthesize 18 binary Pt-IMCs catalysts with relatively small particle sizes, and the evidenced structure met expectations, featuring a uniformed distribution of nanoparticles, base metal elements, and atoms. Six synthesized catalysts were tested and showed excellent activity, capacity, and durability.

Why does STG work? STG, according to the study, coordinates with Pt and Co via a sulfhydryl group and a carboxylate group to form the precursors, which gradually decompose during annealing and form PtCo bimetallic clusters, releasing STG. The STG finally converts into a physical protective carbon coating and provides chemical Pt-S interaction with doped S to suppress PtCo sintering.

The research has also shed some light on the application of Pt intermetallic catalysts in other energy-conversion-related electrocatalysis and heterogeneous catalysis.

(Written by LI Jialin, edited by ZHANG Wenjing, USTC News Center)



Quick Links
Hotline
Campus View
Dictionary
Video Course
Library
Services
Campus Areas Maps
On Campus Societies
Dining Centers
Sports Center
Hospital
Join Us
Join Us
Teacher Recruitment

Address: University of Science and Technology of China,
No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, P.R.China.

E-mail: OIC@ustc.edu.cn

Copyright © 2013 University of Science and Technology of China.